Ehrhart Polynomials of Integral Simplices with Prime Volumes

نویسنده

  • AKIHIRO HIGASHITANI
چکیده

For an integral convex polytope P ⊂ R of dimension d, we call δ(P) = (δ0, δ1, . . . , δd) the δ-vector of P and vol(P) = ∑d i=0 δi its normalized volume. In this paper, we will establish the new equalities and inequalities on δ-vectors for integral simplices whose normalized volumes are prime. Moreover, by using those, we will classify all the possible δ-vectors of integral simplices with normalized volume 5 and 7.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Ehrhart polynomials of integral simplices

Let δ(P) = (δ0, δ1, . . . , δd) be the δ-vector of an integral convex polytope P of dimension d. First, by using two well-known inequalities on δ-vectors, we classify the possible δ-vectors with ∑d i=0 δi ≤ 3. Moreover, by means of Hermite normal forms of square matrices, we also classify the possible δ-vectors with ∑d i=0 δi = 4. In addition, for ∑d i=0 δi ≥ 5, we characterize the δ-vectors of...

متن کامل

Higher integrality conditions, volumes and Ehrhart polynomials

A polytope is integral if all of its vertices are lattice points. The constant term of the Ehrhart polynomial of an integral polytope is known to be 1. In previous work, we showed that the coefficients of the Ehrhart polynomial of a lattice-face polytope are volumes of projections of the polytope. We generalize both results by introducing a notion of k-integral polytopes, where 0-integral is eq...

متن کامل

Ehrhart polynomials of convex polytopes with small volumes

Let P ⊂ R be an integral convex polytope of dimension d and δ(P) = (δ0, δ1, . . . , δd) be its δ-vector. By using the known inequalities on δ-vectors, we classify the possible δ-vectors of convex polytopes of dimension d with P

متن کامل

Coefficient functions of the Ehrhart quasi-polynomials of rational polygons

In 1976, P. R. Scott characterized the Ehrhart polynomials of convex integral polygons. We study the same question for Ehrhart polynomials and quasi-polynomials of nonintegral convex polygons. Define a pseudo-integral polygon, or PIP, to be a convex rational polygon whose Ehrhart quasipolynomial is a polynomial. The numbers of lattice points on the interior and on the boundary of a PIP determin...

متن کامل

Coefficients and Roots of Ehrhart Polynomials

The Ehrhart polynomial of a convex lattice polytope counts integer points in integral dilates of the polytope. We present new linear inequalities satisfied by the coefficients of Ehrhart polynomials and relate them to known inequalities. We also investigate the roots of Ehrhart polynomials. We prove that for fixed d, there exists a bounded region of C containing all roots of Ehrhart polynomials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013